
THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

279

Studying the Philosophy of Software: A Framework for

Examining How Digital Design Affects the Arts

Lindsay Grace, Miami University, Ohio, USA

Abstract: The author extends his previous publications on the observed effects of software design

decisions on the creative process by offering a framework for the philosophical evaluation of software

designs. The task, as described, involves the systematic decomposition of assumptions and intended use

as they effect the creative process.

This research combines the established multidisciplinary examinations of critical design, post modern

philosophy and creative process theory to define an innovative means of decomposing the effects of

digital technology on creative production. The research takes case studies in creative writing and digital

image production to demonstrate how the philosophical study of software design illuminates developer

implied paths to production. Just as the design of a city directs pedestrians and cars, the design of

software directs its users toward specific ends. A structured analysis of these implied paths, informed by

critical examination through the lens of a variety of humanities (e.g. philosophy, social sciences, et al.)

can yield engaging observations about the ways problems are solved with software.

Keywords: Software Philosophy, Creative Process and Software, Digital Design, Software Studies

Introduction

Software is the result of a managed creative process. It is produced by examining problems and

deriving solutions through prioritizing those problems. It is in this standard process that the concept of

software philosophy is most clear. The questions are simple. What are those problems and how have

the software authors proposed to solve them? The investigation of these problems and their address

are software philosophy.

Formally, software philosophy rests nearest the software studies discipline researched by Lev Manovic

and others at UCSD (2008). Where software study is interested in the study of a general software

society and its uses (Fuller, 2008), software philosophy is interested in revealing philosophical

underpinnings of the decisions in the design and expected use of software (Grace, 2009). In particular,

software philosophy is chiefly focused on the pedagogic and polemic content of software. It aims to

apply a kind of design anthropology to the study of software solutions.

The content in this paper is designed to be accessible to a wide audience of readers familiar with general

software tools. In particular it assumes some experience with very basic production tools. Readers

should be familiar with productivity suits like Microsoft Office and image manipulation tools like Adobe

Photoshop. Industry standard terminology is also used. If the reader is not familiar with the

aforementioned tools or terminology this text may be challenging.

THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

280

It should also be made clear that while at the surface, research in the management information systems

area may have ancillary relationships to software and creativity, this writing does not intersect with that

research. The use of decision support systems, for example, largely focuses on the qualities of

information provided to individuals through software, instead of the effects software design decisions

have on the way creative pursuit is executed. For more information about decision support and

software, consider Elam and Mead’s, Can Software Influence Creativity(1990) or MacCrimmon and

Wagner’s Stimulating Ideas through Creative Software (1994).

This brief writing outlines the process of revealing and researching three concepts in software

philosophy as they relate to creative process in the arts. The first is the examination of feedback loops to

expose the ways in which software interfaces can direct the user’s problem solving approach. The

second provides the framework through which software misuse can demonstrate software philosophies

and reveal needed spaces in software design. The third provides perspective on software and its

relationship to creative flow. These topics are explored using a combination of humanities and

computer science driven inquiry.

The Feedback Loop-Structuring the Way we Think

In human computer interaction, designers routinely discuss the feedback loop. The feedback loop is the

circuit between the user and the software they use. As a design philosophy it defines a continuous

interaction stream of input and output. The user inputs information through a keyboard, the computer

accepts that input and outputs the result through the screen, and the user responds by providing more

computer input, for example. In practice, editing a paper in a word processing application, involves

typing and mouse clicks as input, reviewing that input as words on the screen, and correcting any

misspells as a response to the computer’s output.

Software applications follow a fairly standard and somewhat rigid feedback loop. In the case of creative

applications, the user is presented with a previously constructed workspace which is to be filled with

their creative output. This workspace may be the blank page of a word processing application, the

empty canvas of image manipulation software or a barren scene in a 3D software application.

Because so much of software is analogical, the expectation is that these things represent their

appropriate real world equivalents. Before the computer, stories were written on pages, so the

assumption is that a page must be an appropriate metaphor for eliciting input from the user and

reporting output. Yet, like all simulation, there are some things that are explicitly missing from this

likeness of a page. The pages in Microsoft Word, for example, assume top down, left-right writing. This

assumption can be changed in settings, but the model dominates the initiation of writing project in the

application.

More interestingly, the organization of the interface of Microsoft Word reveals an ontology of primary

and secondary concerns when writing. According to the visual hierarchy of the application implied by

order and placement of interface elements, the primary concerns in writing are formatting. The first

page of Microsoft Word’s editing panel is focused on graphic design, not writing. Correcting spelling,

THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

281

for example, is not a primary concern. It is buried in the section under review, which implies that spell

checking is part of the review process. While this may be a common way to write, this is not the only

way to write. It merely indicates the philosophy of writing process encouraged by the application.

If you follow the visual cues of the application, the feedback loop implies a writing process as follows:

1. Write

2. Style

3. Insert non-text content

4. Layout the page

5. Clean up the writing

Now consider the writing process for someone working on a draft on paper:

1. Write

2. Revise

3. Review

4. Insert Content

5. Style

These are two perfectly appropriate creative processes for the writing. In this basic case, Microsoft

Word does not prevent either process, although it does facilitate one better than the other. Playing to

its own strengths as a tool, it could be argued that Microsoft Word biases toward the visual presentation

of a written document philosophically.

Now consider the case of non-linear writing, as often employed in interactive media. In this writing

process, the writer must organize the writing on some basis other than time. In such cases, what rests

at the top of a page does not always logically follow what rests at the bottom of the page. This is

contrary to the design standard of most word processors, which extend as you type from top-to-bottom.

To edit non-linear narratives, most writers retrofit applications to meet their needs. Common solutions

include using spreadsheets instead of word-processors or managing and linking multiple documents

across a user defined file system.

 Since linear writing is the dominant narrative style, most word-processing programs begin with it as

their basis. This is not a short falling of the application, but it does effect the way we address the

challenge of writing non-linear stories. Besides setting up unnecessary challenges to the less traditional

problem of non-linear writing, there is a secondary effect of validation. Inexperienced users are driven

toward prescribed solutions instead of being encouraged to solve it their own way. Original solutions are

at the heart of creativity, but the systems software designers construct around our creative tools do not

encourage us toward them. Where a physical page lacks the rigor of a software program, it also lacks the

limiting prescriptions. Where there is no help file, there is often only creative way finding.

Consider the feedback loop in a misspelled word. The user misspells a word, the word is immediately

identified as incorrect by underlining it in red. Imagine the same physical world analogy, a word is

THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

282

written on a piece of paper and a teacher underlines the word before the sentence is complete. Even if

the word is simply not in the grader’s vocabulary, it continues to loom as a potential mistake. In such a

world, difference is not creative, it is wrong. Imagine if Shakespeare wrote using Microsoft Word. We

might not have the eye ball with which we view our software, the employers to which our template

résumés are sent, or any hint of the more than 1600 words coined by the poet (Admson, 2001). From

this perspective, Microsoft Word is a lousy tool for writing poetry, but wonderful for writing conforming

prose.

This is because software demands use. As a manufactured item, it abounds with designer lead

expectation and practical tolerances. By analogy, a block of wood does not demand use, other than a

few adaptations to its material properties. A block of wood allows its user to construct it with other

pieces, deconstruct it and shape it as needed. A block of wood can be manipulated into sculpture or

worked into a fine piece of furniture.

Software as it is currently designed is more akin to pre-manufactured, ready to assemble furniture. It

has a specific use, a prescribed process under which it is intended to be implemented. There is little

point in breaking that intention because the software simply won’t hold up. Alternative creative process

is often the force that either breaks the application, or sends the user away.

Software Misuse as Design

As software demands specific uses, its intention is integral to our contemporary creative processes.

Specifications are provided in a variety of circles in which the software dictates the output. If word-

processed documents are requested, the requester often provides a list of accepted application formats.

A job seeker, for example, would be asked for a résumé in specific formats. Likewise, presentations,

digital images, and others are all constructed by the software applications associated with them.

Consider if the same were true of art? What if medium dictated output? All works on canvas are to

result in paintings; all works in metal are to result in sculpture. Even more analogous to the ways

software is both used and designed, we not only dictate the result by medium, we determine the

dimensions, shape and audience for the artifact.

From an artistic perspective, audience is often dictated by the technology you choose. If you make

something with Adobe Flash you have the opportunity to share your work over the Web, design

something with Yo Yo Games Game Maker and your audience is immediately limited to the Windows

operating system. This is similar to creating non-digital works that are predetermined for an audience of

the blind or deaf, for example. These are not distinctions of interest; they are distinctions of technical

capacity. Where someone who is blind may not have the technical capacity to see, someone who does

not have the required operating system lacks the technical capacity to view your work.

How does this effect the creative process? It starts at the beginning. Philosophically many software

applications ask their users to make decisions about audience before they begin. Most versions of

Photoshop, for example, ask the user to specify the size of their document before they begin their work.

The document canvas can be resized, but some factors determined at this point cannot be undone

THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

283

easily. The per-pixel resolution of the document, for example is far less malleable. This is an early point

of commitment driven not by the creative process of the user, but by the software designer’s prescribed

workflow.

Consider how many software application tutorials begin with an explanation of concepts and principles

of the application. Before a user can model a 3D object in Maya, they must understand the difference

between non uniform rational b-spline (also known as NURBS) based modeling and polygonal modeling.

That is, before you can work with the tool you must subscribe to its understanding of the world of 3D

modeling. This indoctrination occurs, despite the users’ existing understanding of 3D space.

Now consider the earlier example of non-linear writing. Spreadsheets software, such as Microsoft Excel,

is routinely used to manage lists of storytelling dialogue in non-linear narratives. In some respects this is

an explicit misuse of the software application, as spreadsheet programs are designed for the

management of numerical, not text data. In other ways it is not a misuse, as the software is designed to

favor lists and indices. These attributes make it more convenient than a traditional word processor for

non-linear writing.

One effective way to expose software philosophies is to misuse software. This is not an exercise in

mashing keys and clicking the mouse wildly. It is instead, an activity in careful, directed misuse informed

by alternate understandings of the problem. In the previous case, non-linear writing is realigned from a

problem of formatting and word processing, to a problem of list-making and index matching.

Consider two alternate perspectives on the process of making a virtual 3D model. Maya, a leading

application for this task, is an explicitly additive creative process. Its prescribed creative process begins

with emptiness and fills it with mathematical projections and geometry to simulate 3D space.

Attempting to apply a subtractive creative process to Maya reveals some substantial challenges in using

the application. Yet, as a creative process, sculptors of physical 3D artifacts find themselves adding and

subtracting. A subtractive virtual modeling tool does exist, Z-Brush. In its creative process, 3D modeling

begins with a material which can be reduced into specific forms. A misuse of Maya, inverting its additive

model, reveals the need for subtractive tool. It is not surprising that Maya pre-dates Z-Brush.

An easy approach to revealing these software philosophies begins at their first step. Many applications

ask for document type before they revealed their workspace. If a user begins an application in the

wrong document type, and then works within those constrains they will expose some software

philosophies. It will demonstrate, for example, how Microsoft Word defines the difference between a

formal letter and a résumé. It will also demonstrate the absence of a template for poetry.

Software Viscosity and Flow

As a rule for evaluating software philosophies it is useful to understand that the more resistance created

by software, the more likely it is to transform the way the user evaluates problems. This is derived from

a fundamental rule in usability design – do not ask the user to adapt to the design, adapt to the user.

Yet, even the most basic applications are designed against a fundamental framework that requires the

user to stay on a designated track. Most interfaces for example offer a specific set of ways to accomplish

THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

284

tasks. These are studied in user task analysis, and are typically part of an intended hierarchical path

between user and their objective. Yet, by defining this route, the user is forced in a specific path. That

path may not be the path of least resistance. This is one of the reasons that using physical paper to

prototype or other analog means are so effective (Snyder, 2003). In programming we have work arounds

for problems, in sculpture the artist works within the character of the material.

Working with a medium is the ideal. It allows the creative developer-designer to remain viscous. The

designer-developer can work with the medium, smoothly integrating their own objectives with the

fundamental restrictions of the software environment. A piece of paper may not stand up on its own,

but by working with the character of paper, you can fold it, make curves or otherwise adapt it to your

needs. Paper does not require much training, and it does not require the user to learn a new way to

solve problems. Instead, it is part of a path of least resistance.

Fully constructed software systems, on the other hand, are not like paper. They are more like a toy car

or a blender. They are designed against specific uses and have much more form to them. As such,

adapting them to your needs is much more of a challenge. Yes, a blender and a toy car can stand up on

their own, but they do not bend well and they cannot be curved easily. Instead, if you wanted to build a

tower of blenders you would be working around their original design to make the tower stand. The

original design worked well for its basic needs (blending and pouring), but as your needs change, the

blender does not change. Constructed applications are not necessarily the path of least resistance.

Viscosity refers to the character of a liquid. IT describes the liquids resistance to force. Really great

ideas often come from some balance of objective and adaptability. A person with creative motivation is

much like a liquid moving toward their objective. There are things on the ground that might slow them

down, but the more adaptable they are, the more likely they are to meet their objectives, because non-

viscous (or thin) materials maintain their objective and are not easily stopped by a few obstacles. In the

world of Psychology, this creative character is formally introduced as flow (Csikszentmihalyi, 1997).

When creative people start working with constructed software environments, we are placing that

creative viscosity in a kind of pre-constructed maze. Every time a software philosophy enforces a

particular creative approach, what was not viscous, becomes more viscous. Each time our idea gets

momementum, we must wind that idea through all the walls created by software design decisions. This

is commonly referred to as the work around. The software may have been designed for a set of specific

reasons, but we work around those design intentions to meet our needs. Each time that adjustment is

made, creative flow is stifled, and the free flowing creativity thickens. Simple solutions become

complicated by assumptions in software design and consequently change the character of the creative

flow.

As a means to an end, It is not that we as users are misusing the software by its intention; it is merely

that we are misusing its design. Much like philosophy which has been turned against itself, the user is

exposing the short fallings in the design concept to offer new perspective.

THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

285

Conclusion

It is hoped that this brief introduction to a few of the key issues in software philosophy was helpful to

the reader. As a field of research, the topic is new and full of the potential of fledgling research areas.

The author is engaged in ongoing work to demonstrate alternate software philosophies through the

production of a variety of software applications. The most notable of these are a collection of computer

games which respond to dominant software philosophies in entertainment software. The games,

published under the name Critical Gameplay, have been displayed at a variety of selective academic and

artistic international venues. While the author will continue to investigate this area, it is also hoped that

other researchers will investigate apparent software philosophies in their respective fields. In particular,

the writing arts and visual arts seem ripe for such examination.

THE INTERNATIONAL JOURNAL OF THE HUMANITIES: Author Copy: Volume 8, Number 4, 2010

286

References:

Admson, S. (2001). Reading Shakespeare's dramatic language: a guide. In S. Admson. London: Cengage

Learning EMEA.

Csikszentmihalyi, M. (1997). Creativity: Flow and the Psychology of Discovery and Invention. Harper

Perennial.

Elam, Joyce J., Mead, Melissa.(1990) Can Software Influence Creativity? Information Systems Research.

1: 1-22

Fuller, M. (2008). Software Studies: A lexicon. Boston: M.I.T. Press.

Grace, L. The Philosophies of Software, Handbook of Research on Computational Arts and Creative

Informatics (2009). IGI-Global Press, Hershey, USA,

Manovic, L. (2008). Software Takes Command. San Diego:

http://softwarestudies.com/softbook/manovich_softbook_11_20_2008.pdf.

MacCrimmon, K. R., & Wagner, C. (1997). Stimulating Ideas Through Creativity Software. Management

Science, Vol. 40, No. 11 , 1514-1532 .

Snyder, C. (2003). Paper Protyping. San Francisco: Morgan Kaufmann.

http://softwarestudies.com/softbook/manovich_softbook_11_20_2008.pdf

